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Mixing Angle and Glashow Algebra
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Considering transformations in the basis of fundamental fields on a principal
fiber bundle, without modification in the space-time sector, we construct an
algebra GA, which we call Glashow algebra. The structure constants of this
algebra depend on a mixing angle. The Lagrangian of the gauge theory of
electroweak interactions without masses is obtained using a representation of GA
which is the transformed of the adjoint representation of SU(2) ^ U(1), and
does not coincide with the adjoint representation of GA. The mixing angle is
automatically present in the theory if GA is used.

1. INTRODUCTION

All the fundamental interactions, with the exception of gravitation, are
described by gauge theories. Such is the case for the well-established QED,
for the Standard Model, and for QCD. From the geometrical point of view
such theories correspond, in general terms, to the construction of a principal
fiber bundle with the corresponding gauge group as the structure group and
space-time as the base manifold (Aldrovandi and Pereira, 1995). The choice
of a connection, which establishes the unicity of decomposition of any vector
field on the space tangent to the bundle into a vertical and a horizontal
component, corresponds to the introduction of a gauge potential. The well-
known transformation of connections by the action of the group (adjoint
representation), when pulled back to space-time, gives rise to the usual
transformation of gauge fields. In each associated fiber bundle the covariant
derivative defined in the principal fiber bundle will acquire a form correspond-
ing to the representation of the fields to which it is being applied. That form
is exactly what comes up when the interactions are introduced through the
minimal coupling prescription.
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In consequence, a gauge theory can be locally described on the bundle
by the following commutation relations (Cho, 1975)

[Dm, Dn] 5 2F a
mnXa

[Dm, Xa] 5 0 (1)

[Xa , Xb] 5 f c
ab Xc

where the Xa are the fundamental vector fields on bundle, which represent
the generators of the algebra of the structure group, and Dm is the covariant
derivative given by

Dm 5 m 2 gAa
mXa (2)

with Aa
m being the gauge field, which is a connection, and g is a coupling

constant. F a
mn is the field strength of the gauge field,

F a
mn 5 g[mAa

n 2 nAa
m 1 gf a

bcAb
mAc

n] (3)

Three of the four interactions of nature are described by gauge theories.
For electromagnetism, the structure group is U(1), an Abelian group, and the
commutation relations and field strength are, respectively,

[Dm, Dn] 5 2Fmn

[Dm, X0] 5 0 (4)

[X0, X0] 5 0

and

Fmn 5 mAn 2 nAm (5)

where X0 is the generator of U(1).
For QCD (Cheng and Li, 1984) the structure group is SU(3), which has

eight generators and, in the Gell-Mann basis, the following structure constants:

f 3
12 5 1, f 7

41 5
1
2

, f 6
15 5 2

1
2

, f 6
24 5

1
2

, f 7
25 5 1–2 (6)

f 5
34 5

1
2

, f 7
36 5 2

1
2

, f 8
45 5

!3
2

, f 8
67 5

!3
2

The commutation relations and field strength are directly obtained using (6)
in (1) and (3).

In the case of electroweak interactions, the gauge group is not SU(2) ^
U(1) at all, because to obtain the couplings a mixing angle must be introduced.
We cannot write for this theory the structure constants as we wrote above
for QCD and QED.
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In the present paper we examine the introduction of a mixing angle in
a non-Abelian gauge theory through a modification of the algebra which
makes it possible to write the structure constants in a way analogous to that
of QCD and QED. This leads to a new algebra which we call Glashow
algebra (GA), giving a geometrical interpretation for the introduction of the
mixing angle in electroweak theory. This means that we obtain the Lie algebra
corresponding to SU(2) ^ U(1).mixed. The usual Lagrangian of gauge theories
is obtained by taking the trace. We do obtain the Lagrangian of the Glashow
model (electroweak interactions with no massive bosons) (Mandl and Shaw,
1984) in that way. Notice that it is not at all evident that this can be done,
as the algebra GA is nonsemisimple.

In Section 2 we present the construction of the representations of the
direct product SU(2) ^ U(1) which is needed to obtain some representations
of the Glashow algebra. In Section 3, we construct the Glashow algebra and
in Section 4 we obtain three representations for it. Section 5 contains the
calculus of traces and the construction of the Lagrangian for the Glashow
model. Section 6 is reserved for our conclusion and final remarks.

2. CONSTRUCTION OF THE REPRESENTATIONS OF THE
DIRECT PRODUCT SU(2) ^ U(1)

Let {Xa} be the three generators of SU(2) and X0 that of U(1). We now
proceed to construct the representations associated to the direct product of
SU(2) and U(1).

Consider the commutation relations of both algebras separately:

[Xa , Xb] 5 ec
ab Xc (7)

[Xa , Xb] 5 0 for a or b 5 0 (8)

For the fundamental representation we use the condition

tr[(Ta)2] 5 21/2 (9)

It follows that the fundamental representation is composed of 3 3 3 matrices
whose squares have trace equal to 21/2. Condition (9) characterizes the
fundamental representation of SU(2) alone. We shall keep the same condition
to get a representation which extends that representation. The generators are

T1 5 3
0 2i/2 0

2i/2 0 0
0 0 04 (10)

T2 5 3
0 21/2 0

1/2 0 0
0 0 04 (11)
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T3 5 3
2i/2 0 0

0 i/2 0
0 0 04 (12)

T0 5 3
0 0 0
0 0 0
0 0 i/!24 (13)

All these matrices satisfy (7)–(9) and can be taken to generate the
fundamental representation of the direct product SU(2) ^ U(1).

For the adjoint representation we have 4 3 4 matrices, whose squares
have traces

tr[(Xa)2] 5 22 (14)

a condition which is also valid for the adjoint representation of SU(2).
We obtain the matrices

X1 5 3
0 0 0 0
0 0 21 0
0 1 0 0
0 0 0 0

4 (15)

X2 5 3
0 0 1 0
0 0 0 0

21 0 0 0
0 0 0 0

4 (16)

X3 5 3
0 21 0 0
1 0 0 0
0 0 0 0
0 0 0 0

4 (17)

X0 5 3
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 i!2

4 (18)

satisfying (7), (8), and (14). They generate the adjoint representation of the
direct product.
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3. THE GLASHOW ALGEBRA

Suppose we have a gauge theory whose commutation relations are
given by (1) and whose gauge potentials (or connections) and field strength
are, respectively,

Am 5 Aa
mXa (19)

and (3). On the fiber bundle, they transform as

Xa(Ab
m) 5 f b

ca Ac
m (20)

Xa(F b
mn) 5 f b

caF c
mn (21)

For the direct product SU(2) ^ U(1), we observe that there are no
charged fields in the theory. Interaction terms involve f b

ac. In consequence,
we see from (8) that there exist no interaction terms between the Abelian
and non-Abelian sector. From the experimental data on electroweak interac-
tions we know that there are two charged bosons W+ and W2 and that there
is a mixture between the Abelian and non-Abelian sectors, which gives an
essential contribution to the cross section of the scattering (Mandl and Shaw,
1984; Greiner and Müller, 1996)

e+ 1 e2 → W + 1 W 2 (22)

In the usual gauge theory for the electroweak interaction this problem is
solved by introducing a mixing angle directly in the Lagrangian. The physical
fields appear as mixtures of the original gauge potentials.

Our aim is to interpret the introduction of the mixing angle from the
algebraic point of view. We shall obtain a usual gauge theory considering
not the direct product algebra, but another algebra GA which we will construct.
In order to achieve this aim we should answer the following question:

What is the set of commutation relations which corresponds to the
SU(2) ^ U(1).mixed?

We call {Xa} the basis of fields corresponding to the gauge fields Am 5
Aa

mXa , which satisfy the commutation relations

[Xa , Xb] 5 f c
ab Xc (23)

We associate a new basis of fields {X 8a} to the physical potentials A8a
m

which include two charged and two neutral fields:

A8m 5 A8a
m X 8a (24)

The modification has been made only in the algebraic sector. Conse-
quently, we expect to have no change in space-time:
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A8m 5 Am (25)

The neutral fields are A80
m and A83

m, while the charged fields are given by

A81
m 5

1

!2
(A1

m 2 iA2
m) or A1

m 5
1

!2
(A81

m 1 A82
m) (26)

A82
m 5

1

!2
(A1

m 1 iA2
m) or A2

m 5
i

!2
(A81

m 2 A82
m) (27)

To consider the charged fields in the direct product SU(2) ^ U(1) is
not enough to produce the correct couplings between the fields. We observe
in the Lagrangian or in the equation of motion that the absence of interaction
between A80

m and the other components is due to the values of the structure
constants. We must therefore modify the algebra to obtain the couplings. For
that we begin by making the following transformation:

A3
m 5 aA83

m 1 bA80
m (28)

A0
m 5 gA83

m 1 dA80
m

In order to determine a, b, g, and d we impose on (28) the following
conditions:

(i) Preservation of the quadratic terms: (A0
m)2 1 (A3

m)2 5 (A80
m)2 1

(A83
m)2. This condition is imposed as if there were mass terms in

the Lagrangian, which we want to preserve.
(ii) Transformation continuously connected to the identity.

This leads to the conditions

ab 1 gd 5 0 (29)

a2 1 g2 5 1 (30)

b2 1 d2 5 1 (31)

ad 2 gb 5 1 (32)

from which result the following cases:
Case (i): d 5 a, b 5 2g ⇒ a2 1 g2 5 1. For this we choose the

parametrization a 5 d 5 cos u, b 5 2g 5 sin u
Case (ii): d 5 a, b 5 g ⇒ a2 5 1, g 5 0, b 5 0.
Case (iii): d 5 2a, b 5 2g ⇒ g2 5 1, a 5 0, d 5 0.
We write (28) for the three above cases.
Case (i):
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A3
m 5 cos u A83

m 1 sin u A80
m (33)

A0
m 5 2sin u A83

m 1 cos u A80
m

Case (ii)

A3
m 5 6A83

m (34)

A0
m 5 6A80

m

Case (iii)

A3
m 5 7A80

m (35)

A0
m 5 6A83

m

Expressions (33) correspond to the usual expressions of mixing gauge
fields in Weinberg–Salam theory and we will use them to construct the
new algebra.

Considering (19) and (24), we write (25) explicitly

A81
mX 81 1 A82

mX 82 1 A83
mX 83 1 A80

mX 80

5 A1
mX1 1 A2

mX2 1 A3
mX3 1 A0

mX0 (36)

Using (26), (27), and (33) and equating the coefficients of each component
of A8a

m, we obtain the new generators

X 81 5
1

!2
(X1 1 iX2) (37)

X 82 5
1

!2
(X1 2 iX2) (38)

X 83 5 cos u X3 2 sin u X0 (39)

X 80 5 sin u X3 1 cos u X0 (40)

The new algebra is characterized by the commutation relations of the
fields {X 8a}:

[X 81, X 82] 5 2i (sin u X 80 1 cos u X 83)

[X 81, X 83] 5 i cos u X 81

[X 81, X 80] 5 i sin u X 81 (41)

[X 82, X 83] 5 2i cos u X 82

[X 82, X 80] 5 2i sin u X 82
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[X 80, X 83] 5 0

We observe that there is now a mixing between the generators of the
two sectors.

Cases (ii) and (iii) above are particular cases of (i). To case (ii) there
correspond the angles u 5 0 and u 5 p, giving rise to the algebra

[X 81, X 82] 5 7iX 83

[X 81, X 83] 5 6iX 81

[X 81, X 80] 5 0 (42)

[X 82, X 83] 5 7iX 82

[X 82, X 80] 5 0

[X 80, X 83] 5 0

For case (iii) we have u 5 p/2 and u 5 3p/2 and the algebra is

[X 81, X 82] 5 7iX 80

[X 81, X 83] 5 0

[X 81, X 80] 5 6iX 81 (43)

[X 82, X 83] 5 0

[X 82, X 80] 5 7iX 82

[X 80, X 83] 5 0

These three sets of commutation relations satisfy Jacobi identities and
therefore constitute Lie algebras. As noticed, the last two algebras above are
particular cases of the most general one given by (41), which we call Glashow
algebra (GA).

Since we do not have masses in the theory, all values of angles are
admissible and we could be tempted to construct a theory for each one of
these algebras. But with mass generation and considering the usual masses
relations of the Weinberg–Salam model, in which sin u appears in the denomi-
nator, algebras (ii) and (iii) are actually excluded since they would imply
infinite masses for the gauge bosons.

The structure constants of the new algebra (41) are

f 80
12 5 2i sin u

f 83
12 5 2i cos u
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f 81
13 5 i cos u (44)

f 81
10 5 i sin u

f 82
23 5 2i cos u

f 82
20 5 2i sin u

These are quite different from those of the direct product algebra.
The Killing–Cartan bilinear form associated to the group is given by

gab 5 f c
ad f d

bc (45)

and its determinant is equal to zero. This characterizes the Glashow algebra
as a nonsemisimple one. We have studied other invariant metrics (Aldrovandi
et al., 1999), but they all have null determinant.

4. REPRESENTATIONS OF THE GLASHOW ALGEBRA

We now present two matrix representations of the Glashow algebra. The
first one to be considered is the adjoint representation which is constructed
using the structure constants (44). In that case, the generators are

J81 5 3
0 0 i cos u i sin u
0 0 0 0
0 2i cos u 0 0
0 2i sin u 0 0

4 (46)

J82 5 3
0 0 0 0
0 0 2i cos u 2i sin u

i cos u 0 0 0
i sin u 0 0 0

4 (47)

J83 5 3
2i cos u 0 0 0

0 i cos u 0 0
0 0 0 0
0 0 0 0

4 (48)

J80 5 3
2i sin u 0 0 0

0 i sin u 0 0
0 0 0 0
0 0 0 0

4 (49)

Another representation can be obtained if we consider the adjoint repre-
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sentation of the direct product (15)–(18) and apply to it the transforma-
tions (37)–(40):

X 81 5
1

!2 3
0 0 i 0
0 0 21 0

2i 1 0 0
0 0 0 0

4 (50)

X 82 5
1

!2 3
0 0 2i 0
0 0 21 0
i 1 0 0
0 0 0 0

4 (51)

X 83 5 3
0 2cos u 0 0

cos u 0 0 0
0 0 0 0
0 0 0 2i!2sin u

4 (52)

X 80 5 3
0 2sin u 0 0

sin u 0 0 0
0 0 0 0
0 0 0 i!2cos u

4 (53)

These are the transformed matrices of the adjoint representation of the direct
product, which is different from the adjoint representation of the transformed
algebra. The adjoint representation of the transformed algebra does not coin-
cide with the transformed of the adjoint representation of SU(2) ^ U(1).
This is the representation which will lead to the Lagrangian, as will be seen
in Section 5.

There is still another representation for Glashow algebra. It corresponds
to the transformed representation of the fundamental representation of the
direct product:

T 81 5 2
i

!2 3
0 1 0
0 0 0
0 0 04 (54)

T 82 5 2
i

!2 3
0 0 0
1 0 0
0 0 04 (55)



Mixing Angle and Glashow Algebra 1995

T 83 5
i
2 3

2cos u 0 0
1 cos u 0
0 0 2!2 sin u4 (56)

T 80 5
i
2 3

2sin u 0 0
1 sin u 0
0 0 !2 cos u4 (57)

This is the single 3 3 3 representation found, and can be considered as the
fundamental representation of the Glashow algebra.

Now a natural question arises: are the A8m gauge fields for the Glashow
algebra, that is, do they belong to the adjoint representation? To answer this
question we must determine the behavior of A8m under action of the fields
X 8a. We use the transformation (20) of the gauge fields Am and the expressions
(26), (27), and (33) of these fields, as well as (37)–(40), to obtain

X 8a (A8b
m) 5 f 8b

ca A8c
m (58)

The structure constants (44) have also been used.
Thus, the fields A8m are indeed gauge fields. We may obtain their equa-

tions of motion in the usual way for gauge theories, via the duality prescription
applied to the Bianchi identity. Or we may consider alternatively the usual
Lagrangian of gauge theory to describe their dynamics.

The field strength associated to A8m can be determined using the same
argument above (25) to write the equality

F 8a
mn Xa 5 F 8a

mn X 8a (59)

Using the expression of the field strength of Am, we have

g{m Aa
n Xa 2 n Aa

m Xa 1 g[Ab
m Xb , Ac

n Xc]} 5 F 8a
mn X 8a (60)

Now applying (25), we obtain

g{m A8a
n X 8a 2 n A8a

m X 8a 1 g[A8b
m X 8b, A8c

n X 8c]} 5 F 8a
mn X 8a (61)

which gives

F 8a
mn 5 g[m A8a

n 2 n A8a
m 1 gf 8a

bc A8b
m A8c

n] (62)

We have proceeded with this punctiliousness because of the above finding,
according to which the adjoint of GA is not the transformed of the adjoint
of SU(2) ^ U(1).

With the help of (44) these expressions can be explicitly written as
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F 81
mn 5 g[m A81

n 2 n A81
m1 ig cos u (A81

m A83
n 2 A81

n A83
m)

1 ig sin u(A81
m A80

n 2 A81
n A80

m)] (63)

F 82
mn 5 g[m A82

n 2 n A82
m 2 ig cos u (A82

m A83
n 2 A82

n A83
m)

2 ig sin u(A82
m A80

n 2 A82
n A80

m)] (64)

F 83
mn 5 g[m A83

n 2 n A83
m 2 ig cos u (A81

m A82
n 2 A82

n A81
m)] (65)

F 80
mn 5 g[m A80

n 2 n A80
m 2 ig sin u (A81

m A82
n 2 A82

n A81
m)] (66)

Once in possession of the field strength, we can now construct the
Lagrangian.

5. LAGRANGIAN

The Lagrangian for a gauge theory is

L 5
1

8g2 # d 3x tr (Fmn F mn) (67)

where in the present case Fmn is the field strength in the original algebra,
that is, the direct product algebra. In order to obtain the expression of the
Lagrangian in the Glashow case we use (59):

L 5
1

8g2 # d 3x F 8a
mn F 8bmn tr (X 8a X 8b) (68)

where X 8a are elements of the transformed representation of the adjoint algebra
of the direct product (50)–(53). It is important to notice that here one does
not consider the adjoint representation of the Glashow algebra, but coherently,
the other representation, that is, the transformation of the adjoint representa-
tion of the direct product. If we choose to calculate the traces in the Lagrangian,
the adjoint representation of the Glashow algebra, we obtain a derivative
coupling between the fields An and Zn, which do not correspond to any vertex
of the physical theory.

Thus the role of the second representation is to give the traces for the
Lagrangian. The nonnull traces are

tr(X 80 X 80) 5 22

tr(X 81 X 82) 5 22 (69)

tr(X 83 X 83) 5 22

and the resulting Lagrangian is
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L 5 2
1

4g2 # d 3x {F 80
mn F 80mn 1 F 83

mn F 83mn 1 2F 81
mn F 82mn} (70)

Let us substitute (63)–(66) in the last expression. Making the associations

A81
n → W2

n

A82
n → W1

n (71)

A83
n → Zn

A80
n → An

we obtain the electroweak theory Lagrangian without mass:

L 5 # d 3x H2
1
4

^mn^mn 2
1
4

ZmnZmn 2
1
4

W 1
mnW 2mn

1 ig cos u[(W 2
mW 1

n 2 W 2
n W 1

m ) mZ n 1 (mW 1
n 2 nW 1

m )W 2nZm

2 (mW 2
n 2 nW 2

m )W 1nZm]

1 ig sin u[(W 2
mW 1

n 2 W 2
n W 1

m ) mAn 1 (mW 1
n 2 nW 1

m )W 2nAm

2 (mW 2
n 2 nW 2

m )W 1nAm] (72)

1 g2 cos2 u[W 1
mW 2

n ZmZ n 2 W 1
mW 2mZnZ n]

1 g2 sin2 u[W 1
mW 2

n AmAn 2 W 1
mW 2mAnAn]

1 g2 sin u cos u[W 1
mW 2

n (ZmAn 1 AmZ n) 2 2W 1
mW 2mAnZ n]

1
1
2

g2W 2
mW 1

n [W 2mW 1n 2 W 2nW 1m]J
where

^mn 5 mAn 2 nAm (73)

Zmn 5 mZn 2 nZm (74)

W1
mn 5 mW1

n 2 nW1
m (75)

W2mn 5 mW2n 2 nW2m (76)

6. CONCLUSION

On the bundle of the electroweak theory, we have constructed an algebra
GA through basis transformations affecting only the fundamental, vertical
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fields. The mixing angle is incorporated in the GA structure constants. GA
has two representations in terms of 4 3 4 matrices. One of them is its adjoint
representation and the other is the transformed of the adjoint representation
of the algebra of SU(2) ^ U(1). It is an important point that they do not
coincide. It is the transformed of the adjoint representation of SU(2) ^ U(1)
which provides the traces leading to the Lagrangian. The result is just the
Lagrangian of electroweak interactions without masses.

These massless “physical” fields are the gauge fields written in the new
basis. They are indeed gauge potentials for the Glashow algebra, that is, they
belong to its adjoint representation.

Every gauge theory has an underlying bundle which fixes its geometrical
aspects. The local properties are summed up in the algebra of the vector
fields tangent to the bundle. GA is that algebra for the Glashow model, a
basic step in the construction of the electroweak theory.
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